Bifurcation analysis and effects of changing ionic conductances on pacemaker rhythm in a sinoatrial node cell model

Publication year: 2011
Source: Biosystems, In Press, Accepted Manuscript, Available online 13 June 2011

Zhenxing, Pan , Rei, Yamaguchi , Shinji, Doi

The electrical excitation (action potential generation) of sinoatrial node (cardiac pacemaker) cells is directly related to various ion channels (pore-forming proteins) in cell membranes. In order to analyze the relation between action potential generation and ion channels, we use the Yanagihara-Noma-Irisawa (YNI) model of sinoatrial node cells, which is described by the Hodgkin-Huxley-type equations with seven variables. In this paper, we analyze the global bifurcation structure of the YNI model by varying various conductances of ion channels, and examine the effects of these conductance changes on pacemaker rhythm (frequency of action potential generation). The coupling effect on pacemaker rhythm is…